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Abstract

To investigate the physical properties of fields reflected by time-reversal mirrors, one resorts to a gedanken experiment

where a mirror realizes exactly the time inversion of the incident field. Working with incident rectangular and windowed

harmonic pulses and using an integral equation approach recently developed to deal with scattering from obstacles, the

reflection of plane and spherical pulses on time-reversal mirrors is analysed. It is proved that according to the form of the

incident field, such mirrors may be transparent or behave as a dual source of pulses propagating in the opposite direction

to incident pulses.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Time-reversal mirrors (TRM) described by Fink [1] and Deroche et al. [2], are used to convert an acoustic
wave field from a source into a wave field at the source position. The areas of applications include medical
imagery, lithotripsy and nondestructive testing. The practical realization of TRM is discussed at length in Fink
[1] and mathematical works on their properties are flourishing, among the most recent ones being Bardos and
Fink [3], Bal and Ryzbik [4] and Klibanov and Timonov [5].

This work is concerned with the theoretical properties of TRM waves and, as in the gedanken experiment
devised by Stokes many years ago, mentioned in Fink [1] and Hecht [6], an ideal TRM carrying out exactly the
inversion of time T is devised to investigate plane wave reflection and transmission at a time-reversal interface.
Using an integral equation approach to deal with scattering from obstacles, investigations focus on
rectangular-windowed harmonic plane and spherical pulses with as objective the reflection laws of these
acoustic pulses on TRMs.

The integral equation approach in this work is not the conventional one. This point is made clear on the
scattering of harmonic plane waves, solutions of the Helmholtz equation r2cþ k2c ¼ 0, by a perfectly
reflected surface located in the z ¼ 0 plane. The Sommerfeld terminology is used: x ¼ ðx; y; zÞ;x0 ¼ ðx0; y0; z0Þ,
denote, respectively, the action and source points for the Green’s functions Gðx; x0; kÞ acting as kernels in
integral equations; similarly, S;S0, denote the surface S of action and source points.
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Then, assuming qz0cðx0; kÞ known on the plane S0 ¼ fz0 ¼ 0g, the classical formalism, used for instance by
Sneddon [7], starts with the integral equation

csðx; kÞ ¼

ZZ 1
�1

dx0 dy0½qz0cðx0; kÞGN ðx; x
0; kÞ�S0 ,

where the Green’s function satisfies the Neumann boundary condition on S0, ½qz0GN ðx;x0; kÞ�S0 ¼ 0. If cðx0; kÞ
is known on S0, the integral equation is defined with qz0GDðx;x0; kÞ, S0GD satisfying the Dirichlet boundary
condition ½GDðx;x0; kÞ�S0 ¼ 0.

In the approach recently developed by Hillion [8], the total field cðx; kÞ ¼ ciðx; kÞ þ crðx; kÞ and the Green’s
function gN ðx;x

0; kÞ satisfy the Neumann boundary condition on the plane S ¼ fz ¼ 0g and the integral
equation is

cðx; kÞ ¼ �
ZZ 1
�1

dx0 dy0½cðx0; kÞqz0gNðx;x
0; kÞ�S0 .

If c and gD satisfy on S the Dirichlet boundary condition, the integral equation is defined with qz0c and gD.
In short, fields and Green’s functions are imposed on S0 in the conventional approach and on S in the

second approach.
Now for acoustic pulses as considered here, solutions of the wave equation r2c� c�2q2t c ¼ 0 it is better to

work with the Laplace transform cðx; sÞ of fields and r2c� c�2s2c ¼ 0 of the wave equation to avoid
mathematical difficulties. Then, changing formally ik into s in the previous integral equations provides an
approach to the scattering of pulses by planes on condition to justify the formal exchange k) is and to
perform the inverse Laplace transform of cðx; sÞ.

This paper is organized as follows: Section 2 is devoted to a presentation of the integral equation approach
used to analyse reflection from surfaces on which the total field satisfies the Neumann or the Dirichlet
boundary condition. Section 3 is concerned with the reflection of 2D-rectangular, unit step and windowed
plane harmonic pulses both on conventional and TRMs while the reflection of windowed harmonic spherical
pulses is discussed in Section 4. Conclusive comments are given in Section 5 and Appendix A and B complete
this paper.

2. Integral equation approach

Since the time inversion T : t) �t is exactly carried out by the ideal TRM considered here and since
rectangular and truncated pulses require unit step functions U , it is needed to analyse the behaviour of U not
only under T but also under the parity operator P : x) �x. That the Dirac distribution d is an even function
implies

Tfdðct� zÞg ¼ dð�ct� zÞ ¼ dðctþ zÞ ¼ Pfdðct� zÞg, (1)

so that PT ¼ I the identity operator. For the unit step function U , the following definition is used:

UðxÞ ¼

Z x

1

dðxÞdx ¼ 0 for xo0; 1 for x40, (2)

which entails Uð�xÞ ¼ 1�UðxÞ, so

TfUðct� zÞg ¼ Uð�ct� zÞ ¼ 1�Uðctþ zÞ ¼ 1� PfUðct� zÞg. (3)

From now on, pulses are supposed launched at z ¼ 0 from a source located at z040 above a mirror in the
plane z ¼ 0: so, along this work t and z are positive and the Sommerfeld terminology defined in the
introduction is used, c is the sound velocity and acoustic pulses are solutions of the wave equation
r2c� c�2q2t c ¼ 0.

Then, the total field, incident plus reflected is denoted cðx; tÞ

cðx; tÞ ¼ ciðx; tÞ þ crðx; tÞ, (4)
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c and the Green’s function g are supposed to satisfy on the plane S ¼ fz ¼ 0g the Neumann (hard) boundary
condition

½qzcðx; tÞ�S ¼ 0; ½qzgðx; t; x
0; t0Þ�S ¼ 0. (5)

The integral equation approach summarized in the introduction (see Ref. [9] for an application to acoustics) is
in fact a technique to solve boundary-value problems of the wave equation for which integral equations with
Green’s functions as kernels are known for a long time: see, for instance, Courant and Hilbert [10]. For a field
satisfying the Neumann boundary condition on the plane z ¼ 0, the integral equation is given by Hillion [8] as

cðx; tÞ ¼ �
Z 1
�1

dt0
ZZ 1
�1

dz0 dy0½cðx0; t0Þqz0gðx; t; x
0; t0Þ�z0¼0, (6)

where gðx; t; x0; t0Þ is the inverse Laplace transform of the space Green’s function Gðx;x0; sÞ given by Schlegrov
and Scott Carney [11] and justifying the formal change ik) s

gðx; t; x0; t0Þ ¼ ðic=16p3Þ
Z

Br

ds exp½sðct� ct0Þ�Gðx; x0; sÞ, (7)

Gðx;x0; sÞ ¼

ZZ 1
�1

dbdg s�1z exp½ibðx� x0Þ þ igðy� y0Þ�fexpðszjz� z0jÞ þ expðszjzþ z0jÞg (7a)

with sz ¼ ðs
2 þ b2 þ g2Þ1=2. The Bromwich contour Br in integral (7) is made of a line L parallel to the

imaginary axis of the s-plane with all the singularities of the integrand on its left and of a half circle.
A simple calculation, see Hillion [8], gives on the plane S0 ¼ fz0 ¼ 0g

½qz0gðx; t;x
0; t0Þ�z0¼0 ¼ ðic=8p

3Þ

Z
Br

ds exp½sðct� ct0Þ�G0ðx; x
0; sÞ, (8)

G0ðx;x
0; sÞ ¼

ZZ 1
�1

dbdg exp½ibðx� x0Þ þ igðy� y0Þ� coshðszzÞ (8a)

and taking into account Eq. (8) relation (6) becomes for 0pto1

cðx; tÞ ¼ ð1=8ip3Þ
Z

Br

ds expðsctÞ

ZZ 1
�1

dbdg expðibxþ igyÞ coshðszzÞF ðb; g; sÞ, (9)

F ðb; g; sÞ ¼
ZZ 1
�1

dx0 dy0 expð�ibx0 � igy0Þ

Z 1
�1

cdt0 expð�sct0Þ½cðx0; t0Þ�z0¼0. (9a)

Introducing the symbol L�1 of the inverse Laplace transform, Eq. (9) may be written

cðx; tÞ ¼ L�1fCðx; sÞg; Cðx; sÞ ¼
ZZ 1
�1

dbdg expðibxþ igyÞ coshðszzÞF ðb; g; sÞ. (10)

The integral equation for a scalar field satisfying the Dirichlet (soft) boundary condition ½cðx; tÞ�S¼0,
½gðx; t; x0; t0Þ�S ¼ 0 is obtained by changing in Eq. (9) coshðszzÞ into sinhðszzÞ and in Eq. (9a) ½cðx0; t0Þ�z0¼0 into
½s�1z0 qz0cðx0; t0Þ�z0¼0. But from now on, the Dirichlet boundary condition is left aside.

This integral equation approach requires three steps
1.
 the definition of the total field ½cðx0; t0Þ�z0¼0 on the S0 surface,

2.
 the use of Eq. (9a) to obtain the form factor F ðb; g; sÞ,

3.
 the substitution of F ðb; g; sÞ into Eq. (9) to get the total field outside obstacles.
Then, supposing as just said, an acoustic point source located at ð0; 0; z0Þ, z040 and launching at t ¼ 0
either a rectangular or a windowed harmonic pulse, the integral equation (9) is used to get the total field after
reflection on a TRM located in the z ¼ 0 plane. Reflection of 2D-planar pulses is first analysed before
considering spherical pulses.
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3. Reflection of 2D-planar pulses

To investigate the TRM reflection of 2D-planar pulses, propagation is supposed to be in the ðx; zÞ-plane so
that the coordinates y and g do not intervene. Then, with u ¼ ðx; zÞ and sz ¼ ðs

2 þ b2Þ1=2, integrals (9) and (9a)
reduce for 0pto1 to

cðu; tÞ ¼ ð1=4ip2Þ
Z

Br

ds expðsctÞ

Z 1
�1

db expðibxÞ coshðszzÞF ðb; sÞ, (11)

F ðb; sÞ ¼
Z 1
�1

dx0 expð�ibx0Þ

Z 1
�1

cdt0 expð�sct0Þ½cðu0; t0Þ�z0¼0. (11a)

In addition to make calculations easier, pulses are assumed to impinge normally on the mirror.

3.1. Rectangular pulses

A rectangular pulse of duration t0, launched at t ¼ 0 by a source located at x ¼ 0, z ¼ z0, which impinges
normally on a mirror in the z ¼ 0 plane has the form in which U is the unit step function

ciðz; tÞ ¼ Uðct� z0 þ zÞ �Uðct� ct0 � z0 þ zÞ. (12)

Then, on the plane S0 ¼ fz0 ¼ 0g the incident field reduces to

cið0; t
0Þ ¼ Uðct0 � z0Þ �Uðct0 � ct0 � z0Þ (13)

and to complete the first step of the integral equation approach, the expression of the reflected field on this
plane is required.

On a conventional mirror crð0; t
0Þ ¼ cið0; t

0Þ and the total field is

cð0; t0Þ ¼ crð0; t
0Þ þ cið0; t

0Þ ¼ 2cið0; t
0Þ. (13a)

So using Eq. (13), the second integral in Eq. (11a) with a ¼ z0, b ¼ ct0 þ z0 bounds of the interval inside which
cð0; t0Þa0, takes the formZ 1

�1

cdt0 expð�sct0Þcð0; t0Þ ¼ 2

Z b

a

expð�sct0Þc dt0

¼ 2 s�1 expð�sz0Þ½1� expð�sct0Þ� ð14Þ

and integral (11a) becomes

F ðb; sÞ ¼ 4pdðbÞs�1 expð�sz0Þ½1� expð�sct0Þ�. (15)

Taking into account the definition of sz, the b-integral in Eq. (11) isZ 1
�1

db expðibxÞ coshðszzÞF ðb; sÞ ¼ 2ps�1 expð�sz0Þ½expð�szÞ þ expðszÞ�½1� expð�sct0Þ� (16)

and using Eq. (16) expression (11) may be written

cðz; tÞ ¼ L�1fC�ðz; sÞg þ L�1fCþðz; sÞg, (17)

C�ðz; sÞ ¼ s�1 expð�sz0 � szÞ½1� expð�sct0Þ�. (17a)

But from the well-known property of the Laplace transform, see, for instance, Doetsch [12] and Erdelyi [13]
for a40, tX0

L�1fF ðsÞg ¼ f ðctÞ ) L�1fexpð�asÞF ðsÞg ¼ f ðct� aÞUðct� aÞ (18)

and since L�1f1=sg ¼ UðctÞ a simple calculation gives

L�1fC�ðz; sÞg ¼ Uðct� z0 � zÞ �Uðct� ct0 � z0 � zÞ. (19)
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Finally, substituting Eq. (19) into Eq. (17) supplies the total field with cr obtained from ci by changing z

into �z

cðz; tÞ ¼ ciðz; tÞ þ crðz; tÞ. (20)

This result, in agreement with the Descartes–Snell law, proves the consistency of the integral equation
approach of Section 2.

Now what happens on a TRM? According to Eqs. (3) and (13) the reflected field on the z0 ¼ 0 plane for
incident pulse (12) is

c�r ð0; t
0Þ ¼ Tcið0; t

0Þ ¼ Uð�ct0 � z0Þ �Uð�ct0 þ ct0 � z0Þ

¼ � ½Uðct0 þ z0Þ �Uðct0 � ct0 þ z0Þ� ð21Þ

and from now on, all the quantities pertaining to TRM reflections are starred. Note that Uðct0 þ z0Þ ¼ 1 since
ct0 and z0 are positive and similarly Uðct0 � ct0 þ z0Þ ¼ 1 if z04ct0. In this case c�r ð0; t

0Þ ¼ 0: there is no
reflection and the TRM appears as transparent.

So, assuming ct04z0, and taking into account Eqs. (13) and (21), the total field on the S0-plane which
completes the first step of the integral equation approach, has the form

c�ð0; t0Þ ¼ cið0; t
0Þ � ½1�Uðct0 � ct0 þ z0Þ�

¼ ð1=2Þcð0; t0Þ þ ð1=2Þfð0; t0Þ ð22Þ

in which cð0; t0Þ is given by Eq. (13a) and

fð0; t0Þ ¼ �2½1�Uðct0 � ct0 þ z0Þ�. (22a)

Relation (22) implies that the total field outside the mirror is

c�ðz; tÞ ¼ ð1
2
Þcðz; tÞ þ ð1

2
Þfðz; tÞ (23)

with cðz; tÞ supplied by Eq. (20) so that it is sufficient to look for the contribution of fð0; t0Þ to Eq. (11).
Now according to Eq. (22a), the second integral in Eq. (11a) where Z ¼ ct0 � z0 is since f ¼ 0 for t04ZZ 1

0

cdt0 expð�sct0Þfð0; t0Þ ¼ � 2

Z Z

0

expð�sct0Þcdt

¼ � 2s�1f1� exp½�sðct0 � z0Þ�g ð24Þ

and with Eq. (24), integral (11a) becomes

F ðb; s;fÞ ¼ �4pdðbÞs�1f1� exp½�sðct0 � z0Þ�g. (25)

Substituting Eq. (25) into the b-integral of Eq. (11) gives the contribution fðz; tÞ to the total pulse in the form

fðz; tÞ ¼ L�1fF�ðz; sÞg þ L�1fFþðz; sÞg, (26)

F�ðz; sÞ ¼ �s�1 expð�szÞf1� exp½�sðct0 � z0Þ�g. (26a)

With Eq. (18) and L�1f1=sg ¼ UðctÞ, the inverse Laplace transform of F�ðz; sÞ is easy to perform

f�ðz; tÞ ¼ L�1fF�ðz; sÞg ¼ �½Uðct� zÞ �Uðct� ct0 þ z0 � zÞ�, (27a)

but the inverse Laplace transform L�1fFþðz; sÞg is more difficult to obtain because

fþðz; tÞ ¼ L�1fFþðz; sÞg ¼ L�1fs�1 expðszÞg þUðct� ct0 þ z0 þ zÞ (27b)

and because the only relation obtained from tables of inverse Laplace transforms for aX0 is given by Doetsch
[12]

L�1 expðasÞ F ðsÞ �

Z a

0

expð�sctÞf ðtÞc dt

� �� �
¼ f ðctþ aÞ; aX0, (28)

which is of no help to get L�1fs�1 expðszÞg. Then, using elaborate properties of the Laplace transform given in
Ref. [13] and the analytical representation of Dirac distributions due to Bremermann [14], the following simple
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result is obtained in Appendix A (where to simplify calculations c is made unity)

L�1fexpðasÞg ¼ 2dðctþ aÞ; aX0 (28a)

satisfying Eq. (28) since F ðsÞ ¼ 2 and
R a

0
expð�sctÞdðtÞcdt ¼ 1 for f ðtÞ ¼ 2dðctÞ so that since z; tX0

L�1fs�1 expðszÞg ¼ 2c

Z ct

0

dðctþ zÞdt ¼ 0. (28b)

Then, substituting Eq. (28b) into Eq. (27b) gives

fþðz; tÞ ¼ L�1fFþðz; sÞg ¼ Uðct� ct0 þ z0 þ zÞ, (29)

which implies together with Eq. (27a)

fðz; tÞ ¼ Uðct� ct0 þ z0 þ zÞ þUðct� ct0 þ z0 � zÞ �Uðct� zÞ. (29a)

Substituting finally Eqs. (20) and (29a) into Eq. (23), the total pulse due to the TRM reflection of a rectangular
pulse is

c�ðz; tÞ ¼ ½ciðz; tÞ þ crðz; tÞ�=2þ fUðct� ct0 þ z0 þ zÞ þUðct� ct0 þ z0 � zÞ �Uðct� zÞg=2. (30)

The physical meaning of Eq. (30) valid for ct04z0 is discussed in Section 5.

3.1.1. Remark

It has been stated that there is no TRM reflection for ct0oz0 and that the TRM mirror becomes trans-
parent. In this situation, integral equation (11) cannot be used since boundary condition (5) is not fulfilled by
cðz; tÞ. Instead, the convenient integral equation is defined with the free space Green’s function g0ðu; t; u

0; t0Þ
used in Ref. [8], so that

cðu; tÞ ¼ ð1=2ip2Þ
Z

Br

ds expðsctÞ

Z 1
�1

db expðibx� szÞF ðbsÞ (31)

with F ðb; sÞ still given by Eq. (11a). For the rectangular pulse (12), F ðb; sÞ is expression (15) divided by two and
in Eq. (16) the exponential expðszÞ does not exist. Then, the same calculations leading from Eqs. (17) to (20)
show that Eq. (31) supplies ciðz; tÞ, in agreement with the previous statement.

3.2. Unit-step plane harmonic pulse

A unit-step plane harmonic pulse launched at t ¼ 0 from ð0; z0Þ in the z-direction has the form

ciðz; tÞ ¼ exp½ioðct� z0 þ zÞ�Uðct� z0 þ zÞ, (32)

which becomes on the z0 ¼ 0 plane

cið0; t
0Þ ¼ exp½ioðct0 � z0Þ�Uðct0 � z0Þ. (32a)

On a conventional mirror: crð0; t
0Þ ¼ cið0; t

0Þ, so that the total field is

cð0; t0Þ ¼ 2 exp½ioðct0 � z0Þ�Uðct0 � z0Þ (33)

with s ¼ s� io and the lower bound a ¼ z0 since U ¼ 0 for ct0oz0, the second integral in Eq. (11a) becomesZ 1
�1

c dt0 expð�sct0Þcð0; t0Þ ¼ 2 expð�ioz0Þ

Z 1
a

expð�st0Þcdt0

¼ 2 expð�z0sÞ=s. ð34Þ

Substituting Eq. (34) into Eq. (11a) gives

F ðb; sÞ ¼ 4pdðbÞ expð�sz0Þ=s (35)

and with Eq. (35), the b-integral of Eq. (11) may be written

cðz; tÞ ¼ L�1fC�ðz; sÞg þ L�1fCþðz; sÞg, (36)
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C�ðz; sÞ ¼ exp½�sðz0 � zÞ�=s. (36a)

Then, still using Eq. (18) the inverse Laplace transform of C�ðz; sÞ is since L�1fð1=sÞg ¼ expðiotÞ

L�1fC�ðz; sÞg ¼ exp½ioðct� z0 � zÞ�Uðct� z0 � zÞ (37)

and as expected from the Descartes–Snell law, cr being obtained by changing z into �z in ci the total field is

cðz; tÞ ¼ ciðz; tÞ þ crðz; tÞ. (37a)

Now on a TRM mirror, the reflected field is according to Eqs. (3) and (32a)

c�r ð0; t
0Þ ¼ Tcið0; t

0Þ ¼ exp½�ioðct0 þ z0Þ�Uð�ct0 � z0Þ

¼ exp½�ioðct0 þ z0Þ�½1�Uðct0 þ z0Þ� ð38Þ

and c�r ð0; t
0Þ ¼ 0 since Uðct0 þ z0Þ ¼ 1: a TRM mirror is transparent to a unit step plane harmonic pulse.

3.3. Rectangular plane harmonic pulse

A rectangular harmonic pulse of duration t0 launched at t ¼ 0 from ð0; z0Þ and impinging normally on the
mirror in the plane z ¼ 0 has the form

ciðz; tÞ ¼ exp½ioðct� z0 þ zÞ�V ðt; z; t0; z0Þ, (39)

V ðt; z; t0; z0Þ ¼ Uðct� z0 þ zÞ �Uðct� ct0 � z0 þ zÞ, (39a)

so that on the z0 ¼ 0 plane

cið0; t
0Þ ¼ exp½ioðct0 � z0Þ�V ðt

0; 0; t0; z0Þ (40)

and, as in the previous two sections, the first step for using the integral equation approach of Section 2 is to
obtain the total field cð0; t0Þ on the z0 ¼ 0 plane.

For a conventional mirror, crð0; t
0Þ ¼ cið0; t

0Þ and the total field is

cð0; t0Þ ¼ 2 exp½ioðct0 � z0Þ�V ðt
0; 0; t0; z0Þ, (41)

so with s ¼ s� io and a ¼ z0, b ¼ z0 þ ct0 bounds of the interval inside which Va0, the second integral in
expression (11a) of F ðb; sÞ becomesZ 1

�1

c dt0 expð�sct0Þcð0; t0Þ ¼ 2 expð�ioz0Þ

Z b

a

expð�st0Þcdt0

¼ 2Expcð�sct0Þ expð�z0sÞ=s, ð42Þ

in which Expc is the function

ExpcðxÞ ¼ 1� expðxÞ. (42a)

Substituting Eq. (42) into Eq. (11a) gives at once

F ðb; sÞ ¼ 4pdðbÞExpcð�sct0Þ expð�z0sÞ=s (43)

and the b-integral in Eq. (11) becomes with Eq. (43)

cðz; tÞ ¼ L�1fC�ðz; sÞg þ L�1fCþðz; sÞg, (44)

C�ðz; sÞ ¼ Expcð�sct0Þ exp½�sðz0 � zÞ�=s. (44a)

Using Eq. (42a) and the definition s� io of s gives

C�ðz; sÞ ¼ exp½�sðz� z0Þ�=s� expðioct0Þ exp½�sðct0 þ z� z0Þ�=s, (44b)

while according to Eq. (18) and since Lf1=sg ¼ expðioctÞ

L�1fexp½�sðz0 � zÞ�=sg ¼ exp½iofct� ðz0 � zÞg�U ½ct� ðz0 � zÞ� ¼ w�ðz; tÞ, (45a)

L�1fexp½�sðct0 þ z� z0Þ�=sg ¼ w�½z; ðt� t0Þ�. (45b)
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Then, taking into account Eqs. (44) and (44a)

c�ðz; tÞ ¼ w�ðz; tÞ � expðioct0Þw�½z; ðt� t0Þ�

¼ exp½ioðct� z0 � zÞ�V ðt;�z; t0; z0Þ ð46Þ

in which V is function (39a), so that cþ ¼ ci;c� ¼ cr still in agreement with the Descartes–Snell law

cðz; tÞ ¼ ciðz; tÞ þ crðz; tÞ. (47)

3.3.1. Remark

Due to the properties of the V function, ci exists only for 0pzpz0 at times in the interval 0ptpt1 þ t0 with
t1 ¼ z0=c while cr propagates in the region zX0 at times tXt1.

Now for a TRM, the reflected field on the z0 ¼ 0 plane is according to Eq. (40)

c�r ð0; t
0Þ ¼ Tcið0; t

0Þ ¼ exp½�ioðct0 þ z0Þ�V ð�t0; 0;�t0; z0Þ (48)

with from Eqs. (3) and (39a)

V ð�t0; 0; 0;�t0; z0Þ ¼ �½Uðct0 þ z0Þ �Uðct0 � ct0 þ z0Þ� (48a)

in which ct04z0, otherwise V ¼ 0 and the TRM mirror would be transparent.
Then, with cð0; t0Þ given by Eq. (41), the total field on the mirror c� ¼ ci þ c�r may be written

c�ð0; t0Þ ¼ ð1
2
Þcð0; t0Þ þ ð1

2
Þfð0; t0Þ (49)

with according to Eqs. (48) and (48a) in which Uðct0 þ z0Þ ¼ 1

fð0; t0Þ ¼ �2 exp½�ioðct0 þ z0Þ�½1�Uðct0 � ct0 þ z0Þ�, (49a)

so that the total pulse outside the mirror takes the form

c�ðz; tÞ ¼ cðz; tÞ=2þ fðz; tÞ=2, (50)

where cðz; tÞ is expression (47). So, it is just sufficient to look for the contribution of Eq. (49a) to form factor
(11a). Introducing the variable sy ¼ sþ io and substituting Eq. (49a) into the second integral of Eq. (11a)
gives with the upper bound Z ¼ ct0 � z0

Z 1
0

c dt0 expð�sct0Þfð0; t0Þ ¼ � 2 expð�ioz0Þ

Z Z

0

expð�syct0Þcdt0
� �

¼ � 2½expð�ioz0Þ � expð�syct0 þ sz0Þ�=sy. ð51Þ

With Eq. (51) the form factor (11a) becomes

Ffðb; sÞ ¼ �4pdðbÞ½expð�ioz0Þ � expð�ioct0Þ expf�sðct0 � z0Þg�=sy (52)

and the contribution fðz; tÞ to the total pulse is with Eq. (52) substituted to F ðb; sÞ in the b-integral of Eq. (11)
using the definition of cosh z in terms of expð�zÞ

fðz; tÞ ¼ L�1fF�ðz; sÞg þ L�1fFþðz; sÞg, (53)

F�ðz; sÞ ¼ � expð�ioz0Þ expð�szÞ=sy þ expð�syct0Þ exp½sðz0 � zÞ�=sy. (53a)

Then, using Eqs. (18), (28a) and L�1f1=syg ¼ expð�iotÞ the expressions of f�ðz; tÞ are as in Eqs. (27a) and
(29a)

f�ðz; tÞ ¼ L�1fF�ðz; sÞg ¼ � exp½�ioðctþ z0 � zÞ�½Uðct� zÞ �Uðct� ct0 þ z0 � zÞ�,

fþðz; tÞ ¼ L�1fFþðz; sÞg ¼ exp½�ioðctþ z0 þ zÞ�Uðct� ct0 þ z0 þ zÞ. (54)
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Substituting Eqs. (47) and (54) into Eq. (50) gives the total pulse due to the TRM reflection of a rectangular
plane harmonic field provided that ct04z0

c�ðz; tÞ ¼ ð1
2
Þ½ciðz; tÞ þ crðz; tÞ� þ ð

1
2
Þ½f�ðz; tÞ þ fþðz; tÞ�. (55)

3.3.2. Remark

A pulse incident from ð0; z0Þ in the y-direction has the expression with Z ¼ x sin yþ ðz� z0Þ cos y

cðu; tÞ ¼ exp½ioðct� ZÞ�½Uðct� ZÞ �Uðct� ct0 � ZÞ� (56)

leading just to change z and z0 into z cos yþ x sin y and z0 cos y in the previous results.
The physical meaning of these results is discussed in Section 5.

4. Reflection of windowed spherical harmonic pulses

The acoustic point source still on the z-axis at the altitude z0 is now supposed to launch at t ¼ 0 a truncated
spherical harmonic pulse with duration t0

ciðr; z; tÞ ¼ exp½ioðct� r�Þ�V ðt; r�Þ=r�; V ðt; r�Þ ¼ ½Uðct� r�Þ �Uðct� ct0 � r�Þ�, (57)

r� � r�ðr; zÞ ¼ ½r2 þ ðz� z0Þ
2
�1=2; r�ð0; zÞ ¼ z0 � z; r2 ¼ x2 þ y2. (57a)

3D-integral equation (9) has now to be used and the first step to get form factor (9a) is to define the total field
ciðr

0; 0; t0Þ on the plane S0 ¼ fz0 ¼ 0g. According to Eq. (57), the incident field is

ciðr
0; 0; t0Þ ¼ exp½ioðct0 � r0Þ�V ðt0; r0Þ=r0, (58)

r0 ¼ ðr02 þ z20Þ
1=2; V ðt0; r0Þ ¼ Uðct0 � r0Þ �Uðct0 � ct0 � r0Þ (58a)

and, for the reflected field crðr
0; 0; t0Þ, conventional and TRMs are considered apart.

4.1. Reflection on a conventional mirror

The reflected pulse on the z0 ¼ 0 plane is crðr
0; 0; t0Þ ¼ ciðr

0; 0; t0Þ and the total field according to Eq. (58)

cðr0; 0; t0Þ ¼ 2 exp½ioðct0 � r0Þ�V ðt0; r0Þ=r0. (59)

Then, with s ¼ s� io and a ¼ r0; b ¼ r0 þ ct0, bounds of the interval inside which Va0, the second integral
in Eq. (9a) is

Z 1
�1

cdt0 expð�sct0Þcðr0; 0; t0Þ ¼ ð2=r0Þ expð�ior0Þ

Z b

a

expð�sct0Þc dt0

¼ 2Expcð�sct0Þ expð�sr0Þ=sr0 ð60Þ

in which Expc is function (42a). Substituting Eq. (60) into Eq. (9a) gives

F ðb; g; sÞ ¼ ð1=sÞExpcð�sct0ÞF0ðb; g; sÞ, (61)

F0ðb; g; sÞ ¼ 2

ZZ 1
�1

dx0 dy0 expð�ibx0 � igy0 � sr0Þ=r0. (61a)

Introducing the polar coordinates

x0 ¼ r0 cos u0; y0 ¼ r0 sin u0; x ¼ r cos u; y ¼ r sin u; b ¼ m cos y; g ¼ m sin y, (62)
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integral (61a) becomes

F 0ðb; g; sÞ ¼ 2

Z 1
0

r0 dr0 expð�sr0Þ=r0
Z 2p

0

dt0 exp½imr0 cosðu0 � yÞ�

¼ 4p
Z 1
0

expð�sr0ÞJ0ðmr0Þr0 dr0=r0 ð63Þ

in which J0 is the Bessel function of the first kind of order zero. But, taking into account the definition (58a) of
r0 implies that Eq. (63) is a Sonine–Gegenbauer integral and according to Watson [15]

F0ðb; g; sÞ ¼ 4pðs2 þ m2Þ�1=2 exp½�ðs2 þ m2Þ1=2z0� (63a)

and form factor (61) becomes

F ðm; sÞ ¼ 4ps�1ðs2 þ m2Þ�1=2 Expcð�sct0Þ exp½�ðs
2 þ m2Þ1=2z0�. (64)

Now, with coordinates (62), since sz ¼ ðs
2 þ m2Þ1=2 and coshðszzÞ ¼ ½expðszzÞ þ expð�szzÞ�=2 integral (9) may

be written

cðr; z; tÞ ¼ cþðr; z; tÞ þ c�ðr; z; tÞ, (65)

c�ðr; z; tÞ ¼ ð1=16ip
3Þ

Z
Br

ds expðsctÞ

Z 1
0

mdm
Z 2p

0

dy exp½imr cosðu� yÞ� exp½�zðs2 þ m2Þ1=2�F ðm; sÞ

¼ ð1=8ip2Þ
Z

Br

ds expðsctÞ

Z 1
0

mdmJ0ðmrÞ exp½�zðs2 þ m2Þ1=2�F ðm; sÞ ð65aÞ

and substituting Eq. (64) into Eq. (65a) gives

c�ðr; z; tÞ ¼ ð1=2ipÞ
Z

Br

s�1 ds expðsctÞExpcð�sct0ÞC�ðr; z; sÞ, (66)

C�ðr; z; sÞ ¼
Z 1
0

mdmðs2 þ m2Þ�1=2J0ðmrÞ exp½�ðs2 þ m2Þ1=2ðz0 � zÞ�, (66a)

which is still a Sonine–Gegenbauer integral with according to Watson [15]

C�ðr; z; sÞ ¼ expð�sr�Þ=r�; r� ¼ ½r2 þ ðz� z0Þ
2
�1=2 (67)

and with Eq. (67) integral (66) becomes

c�ðr; z; tÞ ¼ ð1=r�ÞL
�1fs�1 expð�sr�ÞExpcð�sct0Þg (68)

in which

Expcð�sct0Þ ¼ 1� expð�sct0Þ expðioct0Þ. (68a)

Then, according to Eq. (18) and to L�1f1=sg ¼ expðioctÞ

L�1fexpð�sr�Þ=sr�g ¼ exp½ioðct� r�Þ�Uðct� r�Þ=r� � w�ðr; z; tÞ,

L�1fexpð�sr�Þ expð�sct0Þ=sr�g ¼ w�ðr; z; t� t0Þ. (69)

Taking into account Eqs. (68a) and (69) relation (68) has the final form

c�ðr; z; tÞ ¼ w�ðr; z; tÞ � expðioct0Þw�ðr; z; t� t0Þ. (70)
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Using definition (69) of the w� functions it is easily checked that c� ¼ ci;cþ ¼ cr, so that substituting
Eq. (70) into Eq. (65) gives, for the total field generated by a windowed harmonic pulse impinging on a
conventional mirror

cðr; z; tÞ ¼ ciðr; z; tÞ þ crðr; z; tÞ (71)

sum of the incident and reflected waves as expected from the Descartes–Snell law, a result justifying the
consistency of integral equation (9).

4.2. Reflection on a time-reversal mirror

Now the reflected pulse on the z0 ¼ 0 plane c�r ðr
0; 0; t0Þ ¼ Tciðr

0; 0; t0Þ is according to Eq. (58)

c�r ðr
0; 0; t0Þ ¼ exp½�ioðct0 þ r0Þ�V ð�ct0; r0Þ=r0 (72)

with Eqs. (3) and (58a)

V ð�ct0; r0Þ ¼ �½Uðct0 þ r0Þ �Uðct0 � ct0 þ r0Þ�, (72a)

so that since cðr0; 0; t0Þ ¼ 2ciðr
0; 0; t0Þ the total field on the mirror is

c�ðr0; 0; t0Þ ¼ ð1
2
Þcðr0; 0; t0Þ þ ð1

2
Þfðr0; 0; t0Þ (73)

with cðr0; 0; t0Þ given by Eq. (59) while using Eq. (70a) in which Uðct0 þ r0Þ ¼ 1

fðr0; 0; t0Þ ¼ �ð2=r0Þ exp½�ioðct0 þ r0Þ�½1�Uðct0 � ct0 þ r0Þ�. (73a)

In these relations ct04z0, otherwise V ð�t0; r0Þ ¼ 0 for any x0; y0: there is no reflection and the TRM is
transparent to the spherical pulse.

According to Eq. (73), the total pulse outside the mirror has the form

c�ðr; z; tÞ ¼ cðr; z; tÞ=2þ fðr; z; tÞ=2 (74)

with cðr; z; tÞ given by Eq. (71) so that it is sufficient to look for the contribution fðr; z; tÞ due to fðr0; 0; t0Þ.
Using Eq. (73a) where sy ¼ sþ io and the bounds a; b of the interval inside which fa0, with a ¼ 0 since
Uðct0 þ r0Þ ¼ 1 for t040 and b ¼ ct0 � r0 provided that ct04r0, the second integral in the form factor (9a)
becomesZ 1
�1

cdt0 expð�sct0Þfðr0; 0; t0Þ ¼ � ð2=r0Þ expð�ior0Þ

Z 1
0

cdt0 expð�syct0Þ �

Z 1
b

cdt0 expð�syct0ÞUðbÞ

� �

¼ � ð2=syr0Þ expð�ior0Þ½1� expð�sybÞUðbÞ�. ð75Þ

Substituting Eq. (75) into Eq. (9a) gives the f-contribution to the form factor noted F ðb; g; s; fÞ

F ðb; g; s; fÞ ¼ F0ðb; g; s; fÞ þ F1ðb; g; s; fÞ. (76)

F0ðb; g; s; fÞ is the contribution of the first term in Eq. (75)

F0ðb; g; s; fÞ ¼ �2=sy
ZZ 1
�1

dx0 dy0 expð�ibx0 � igy0 � ior0Þ=r0, (77)

which is Eq. (61a) with s changed into io and divided by �sy so that according to Eq. (63a)

F 0ðb; g; s; fÞ ¼ �4pðm2 � o2Þ
�1=2 exp½�z0ðm2 � o2Þ

1=2
�=sy. (78)

Now taking into account the definition of the lower bound b, the second term of Eq. (75) is

F1ðb; g; s; fÞ ¼ 2 expð�syct0Þ=sy
ZZ 1
�1

dx0 dy0 expð�ibx0 � igy0 þ sr0Þ=r0Uðct0 � r0Þ. (79)

The integrations in Eq. (79) may be performed with cylindrical coordinates (62) but the unit function Uðct0 �

r0Þ imposes an upper bound p on p0-integration and p ¼ ðc2t20 � z20Þ
1=2 according to definition (58a) of r0 so that
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integral (79) becomes

F 1ðb; g; s; fÞ ¼ �4p2 expð�syct0Þ=sy
Z p

0

r0 dr0 expðsr0ÞJ0ðmr0Þ=r0. (79a)

Assuming p=z0 small, the Oðp2=z20Þ approximation of F1ðb; g; s; fÞ, where O is the Landau symbol is obtained
in Appendix B

F1ðb; g; s; fÞ ¼ �4p2=ssy expð�ioct0ÞExpc½�sðct� z0Þ�J0ðmpÞ (80)

in which ExpcðxÞ is function (42a).
Now, using Eq. (76), integral equation (9) which supplies fðr; z; tÞ can be written

fðr; z; tÞ ¼ f0ðr; z; tÞ þ fjðr; z; tÞ, (81)

fjðr; z; tÞ ¼ L�1fFj;�ðr; z; sÞg þ L�1fFj;þðr; z; sÞg; j ¼ 0; 1. (81a)

Then according to Eqs. (9) and (78), still using coordinates (62)

F0;�ðr; z; sÞ ¼ 1=sy
Z 1
0

mdmðm2 � o2Þ
�1=2J0ðmrÞ exp½�ðm2 � o2Þ

1=2
ðz0 � zÞ�

¼ expð�ior�Þ=r�sy; r� ¼ ½r2 þ ðz0 � zÞ2�1=2 ð82Þ

obtained from Eqs. (66a) and (67) with s changed into io so that according to Eqs. (81a) and (82)

f0ðr; z; tÞ ¼ exp½�ioðctþ r�Þ�=r� þ exp½�ioðctþ rþÞ=rþ�. (83)

Now, substituting Eq. (80) into Eq. (9) gives with coordinates (62)

F1;�ðr; z; sÞ ¼ ð1=sysÞbðs; z0; t0ÞKðs; zÞ; bðs; z0; t0Þ ¼ expð�ioct0Þ � exp½�sðct0 � z0Þ�, (84)

Kðs; zÞ ¼

Z 1
0

mdmJ0ðmrÞJ0ðmpÞ exp½�ðs2 þ m2Þ1=2z�. (84a)

Unfortunately, approximation (80) does not make possible to define F1;þðr; z; sÞ since the exponential in the
integrand of Kðs; zÞ would have a positive sign. So numerical computations are required to get F1;þðr; z; sÞ and
ultimately f1;þðr; z; tÞ; this problem is now left aside.

Conversely, the inverse Laplace transform f1;�ðr; z; tÞ ¼ L�1fF1;�ðr; z; sÞg of Eq. (84) requires an
approximation of Eq. (84a) supplied by the Laplace approximating technique of integrals developed by
Olver [16]. Succinctly, let IðzÞ be the following integral in which w0ðaÞ40 and qðaÞa0:

IðzÞ ¼

Z b

a

da exp½�zwðaÞ�qðaÞ. (85)

If the peak value of the factor exp½�zwðaÞ� occurs at a ¼ a then

IðzÞ� qðaÞ exp½�zwðaÞ�=zw0ðaÞ. (85a)

Now, Kðs; zÞ is an integral of type (85) with a ¼ m2, wðaÞ ¼ ðs2 þ aÞ1=2, qðaÞ ¼ J0ðr
p
aÞJ0ðp

p
aÞ and since in

Eq. (82a) the lower bound of the integral is a ¼ 0 and since J0ð0Þ ¼ 1, approximation (85a) applied to Eq. (84)
gives

Kðs; zÞ� sz�1 expð�szÞ. (86)

Then, substituting Eq. (86) into Eq. (84) and making explicit bðs; t0; z0Þ, the approximation of F1;�ðr; z; sÞ is

F1;�ðr; z; sÞ� ð1=syzÞ expð�ioct0Þfexpð�szÞ � exp½�sðct0 � z0 þ zÞ�g (87)

and the inverse Laplace transform of Eq. (87) is obtained at once using Eq. (18) and L�1f1=syg ¼ expð�ioctÞ

f1;�ðr; z; tÞ� z�1fexp½�ioðctþ ct0 � zÞ�Uðct� zÞ � exp½�ioðct� z0 þ zÞ�Uðct� ct0 þ z0 � zÞg (88)

an approximation valid for small ðc2t20 � z20Þ
1=2=z0 and large z.
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To sum up, the contribution fðr; z; tÞ to total field (74) outside the mirror, due to component (73a) of the
reflected field fðr0; 0; t0Þ on the TRM, is made according to Eq. (81) of two parts: the first one supplied by
Eq. (83) does not require any unit step function while only the approximation (88) of the second part could be
obtained. Finally, according to Eq. (74), to get the total TRM pulse the field cðr; z; tÞ given by Eq. (71) must
be added to fðr; z; tÞ.

5. Discussion

Using the notations cþ ¼ ci and c� ¼ cre, to denote the incident and reflected fields, incident rectangular
pulse (12) impinging on a conventional mirror generates the total pulse

cðz; tÞ ¼ cþðz; tÞ þ c�ðz; tÞ (89)

with according to Eq. (19)

c�ðz; tÞ ¼ Uðct� z0 � zÞ �Uðct� ct0 � z0 � zÞ. (89a)

Conversely, on a TRM, there is no reflection at all when ct0oz0 while if ct04z0 the total field after reflection is
given by Eq. (23)

c�ðz; tÞ ¼ ½cðz; tÞ þ fðz; tÞ�=2, (90)

in which cðz; tÞ is pulse (89) and

fðz; tÞ ¼ fþðz; tÞ þ f�ðz; tÞ (91)

with from Eqs. (27a) and (27b)

f�ðz; tÞ ¼ �½Uðct� zÞ �Uðct� ct0 þ z0 � zÞ�. (91a)

Then, it is natural to compare ciðz0; tÞ and fð0; tÞ with Eqs. (89a) and (91a)

ciðz; tÞ ¼ UðctÞ �Uðct� ct0Þ,

f�ð0; tÞ ¼ �½UðctÞ �Uðct� ct0 þ z0Þ�; ct04z0, (92)

so that the TRM acts as a source, launching at t ¼ 0 a rectangular pulse with a reduced duration t0 � z0=c in
the opposite direction to the incident pulse. Exchanging the roles of z0 and zero in Eq. (92) and assuming
ct0o2z0 so that fþðz0; tÞ ¼ 0 since in this case the argument of both unit step functions in Eq. (91a) is positive,
we have

cið0; tÞ ¼ Uðct� z0Þ �Uðct� ct0 � z0Þ,

f�ðz0; tÞ ¼ �½Uðct� z0Þ �Uðct� ct0Þ�. ð93Þ

Relations (92) and (93) display the dual character of both sources.
For a rectangular plane harmonic source, the fields c�, f� in Eqs. (89) and (91) are now supplied by Eqs.

(39) and (54) giving instead of Eqs. (92) and (93)

ciðz0; tÞ ¼ expðioctÞ½UðctÞ �Uðct� ct0Þ�,

f�ð0; tÞ ¼ � exp½�ioðctþ z0Þ�½UðctÞ �Uðct� ct0 þ z0Þ� (94)

and still assuming ct0o2z0

cið0; tÞ ¼ exp½ioðct� z0Þ�½Uðct� z0Þ �Uðct� ct0 � z0Þ�,

f�ðz0; tÞ ¼ � expð�ioctÞ½Uðct� z0Þ �Uðct� ct0Þ�. ð95Þ

In this case also, the TRM acts as a dual source launching at t ¼ 0 a rectangular harmonic pulse with reduced
duration in the opposite direction to the incident pulse.

No doubt that a similar situation prevails for truncated spherical harmonic pulses, but it is difficult to assess
the exact form of the pulse launched by the TRM dual source since rather drastic approximations had to be
made to get analytical expressions such as Eqs. (83) and (88).
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To sum up, the Stokes-like gedanken experiment suggests that TRMs behave as a dual source of pulses in
agreement with real experiments analysed by Finch [1] but that they may also become transparent when the
pulse duration is smaller that the time needed to go from the source to the mirror. It is not known whether this
last property has been observed.

It is assumed in this work that the total field on the mirror satisfies the Neumann boundary condition,
similar calculations can be performed with Dirichlet boundary conditions but they are less simple because the
form factor F ðb; g; sÞ requires the derivative of the total field on the plane S0 ¼ fz0 ¼ 0g.
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Appendix A

Here, to simplify calculations the sound speed c ¼ 1, the following result is proved:

Lemma. expðasÞ with a40 has the inverse Laplace transform

L�1fexpðasÞg ¼ 2dðtþ aÞ; a40; tX0. (A.1)

Proof. The following relations given by Erdelyi [13], valid for a40

L�1fs�1=2 coshða=sÞg ¼ ð4ptÞ�1=2 cos 2
p

at
� �

þ cosh 2
p

at
� �� �

,

L�1fs�1=2 sinhða=sÞg ¼ ð4ptÞ�1=2 cosh 2
p

at
� �

� cos 2
p

at
� �� �

ðA:2Þ

supply the inverse Laplace transforms

L�1fs�1=2 expða=sÞg ¼ ðptÞ�1=2 cosh 2
p

at
� �

,

L�1fs�1=2 expð�a=sÞg ¼ ðptÞ�1=2 cos 2
p

at
� �

. ðA:3Þ

But, if L�1fF ðsÞg ¼ f ðtÞ then according to Doetsch [12]

L�1fs�1=2F ðs�1Þg ¼ ðptÞ�1=2
Z 1
0

cos 2
p

tt
� �

f ðtÞdt. (A.4)

Applying Eq. (A.4) to Eq. (A.3) gives for a40

L�1fexpðasÞg ¼ ðp2tÞ�1=2
Z 1
0

t�1=2 cos 2
p

tt
� �

cosh 2
p

at
� �

dt, (A.5)

L�1fexpð�asÞg ¼ ðp2tÞ�1=2
Z 1
0

t�1=2 cos 2
p

tt
� �

cos 2
p

at
� �

dt. (A.6)

Then, using the variables t ¼ x2, t ¼ x2, a ¼ b2, Eq. (A.6) becomesZ 1
0

t�1=2 cos 2
p

tt
� �

cos 2
p

at
� �

dt ¼
Z 1
0

dxfcos½2xðbþ xÞ� þ cos½2xðb� xÞ�g

¼ 2�1
Z 1
�1

dxfexp½2ixðbþ xÞ� þ exp½2ixðb� xÞ�g ðA:7Þ

and

ðA:7Þ ¼ pfd½2ðbþ xÞ� þ d½2ðb� xÞ�g

¼ p=2fdðbþ xÞ þ dðb� xÞg ¼ pxdðb2
� x2Þ. ðA:8Þ

Substituting Eq. (A.8) into Eq. (A.6) and coming back to the variables t; t; a, give

L�1fexpð�asÞg ¼ dðt� aÞUðt� aÞ; a40, (A.9)
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which is the usual result (see, for instance, Ref. [12]). Changing a into �a, that is b into ib transforms Eq. (A.6)
into Eq. (A.5) leading instead of Eq. (A.7) toZ 1
0

t�1=2 cos 2
p

tt
� �

cosh 2
p

at
� �

dt ¼ ð1=2Þ

Z 1
0

dx½expfixð2xþ 2ibÞg þ expf�ixð2xþ 2ibÞg� þ f�g

� �
, ðA:10Þ

where f�g denotes the complex conjugate term. Then, using the relation given by Bremermann [14] for the
asymmetrical Dirac distribution dþ Z 1

0

dz expðitzÞ ¼ 2pdþðzÞ; Im z40 (A.11)

and the similar expression for d�ðzÞ, relation (A.10) becomesZ 1
0

t�1=2 cos 2
p

tt
� �

cosh 2
p

at
� �

dt ¼ 2pfd½2ðibþ xÞ� þ d½2ðib� xÞ�g

¼ 2pxdðb2
þ x2Þ. ðA:12Þ

Substituting Eq. (A.11) into Eq. (A.4) and coming back to the variables t; t; a, give Eq. (A.1).

Appendix B

With p2 ¼ c2t20 � z20 integral (79a) is written

F 1ðb; g; s; fÞ ¼ �4p2 expð�syct0Þ=syIðm; sÞ, (B.1)

Iðm; sÞ ¼
Z p

0

r0 dr0 expðsr0ÞJ0ðmr0Þ=r0. (B.2)

Lemma. The integral F 1ðb; g; s; fÞ has the Oðp2=z20Þ approximation

F1ðb; g; s; fÞ ¼ �4p2=ssy expð�ioct0ÞExpc½�sðct0 � z0Þ�J0ðmpÞ, (B.3)

Expc½�sðct0 � z0Þ� ¼ expð�ioct0Þ½1� exp½�sðct0 � z0Þ�� (B.4)

in which O denotes the Landau symbol.

Proof. Introducing the r0 variable r0 ¼ z0 sinh a and since r0 ¼ z0 cosh a, Iðm; sÞ becomes

Iðm; sÞ ¼ � z0

Z Z

0

sinh ada expðsz0 cosh aÞJ0ðmz0 sinh aÞ

¼ � s�1
Z Z

0

dfexpðsz0 cosh aÞgJ0ðmz0 sinh aÞ ðB:5Þ

with

sinh Z ¼ p=z0; cosh Z ¼ ct0=z0. (B.6)

Integrating by parts and taking into account Eq. (B.6) give

Iðm; sÞ ¼ s�1fexpðsct0ÞJ0ðmpÞ � expðsz0Þg þ I1ðm; sÞ, (B.7)

I1ðm; sÞ ¼ mz0=s

Z Z

0

cosh ada expðsz0 cosh aÞJ1ðmz0 sinh aÞ (B.8)

Assuming Z small, we may use the Oða2Þ approximations sinh a�a, cosh a�1, in the integrand of Eq. (B.8) so
that

I1ðm; sÞ ¼ mz0s�1 expðsz0Þ

Z Z

0

daJ1ðmz0aÞ þOðZ2Þ. (B.9)
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And using the integral
R a

0 J1ðxÞdx ¼ 1� J0ðaÞ (see, for instance, Ref. [15]) reduces Eq. (B.9) to

I1ðm; sÞ ¼ s�1 expðsz0Þ½1� J0ðmpÞ�. (B.10)

Taking into account Eq. (B.10), relation (B.7) becomes

Iðm; sÞ ¼ �s�1J0ðmpÞfexpðsct0Þ � expðsz0Þg (B.11)

and substituting Eq. (B.11) into Eq. (B.1) gives finally Eq. (B.3).
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